NORTHERN
KENTUCKY
UNIVERSITY

Manipulating Neural Networks
Wayne Leeke, leekewl @nku.edu

How Neural Networks Decide

Neural networks can discover similarities between, and group
samples of data together. These decisions are called classifications
and are based on commonalities of features in the data. How much
a feature contributes to its decided class is called saliency.
Observations that share features may belong to the same class, but
the classifications themselves may share commonalities with each
other. E.g., the classifications “dog” and “wolf” may share several
features such as shape and coloration. Between each class there is
a decision boundary, where similar classes intersect with each
other.

Logistic Regression

-2 -1 0 1 2

Logistic regression decision boundary between two classes.
Decision boundaries in ML models with low dimensionality are
easiest to understand. [1]

The decision boundaries for complex models, neural networks with
10s of features, become difficult to visualize. However, by
restricting analysis to two features a 2D plane can be constructed.
Three classes create a 3D space, and so on. In high dimensional
data it’s possible for some classes to not share a boundary. Some
more complex models such as neural networks draw can draw
non-linear decision boundaries.

Adversarial Samples

Many techniques exist to examine the saliency of a model. Most
are incredibly reliable in not only understanding decisions, but also
in manipulating features to achieve a different classification.
ldeally, an adversarial example should be indistinguishable from
normal samples by both humans and machines. This makes
detection more difficult. For images, this could be manipulating a
limited number of pixels that maximizes saliency for the adjacent
classifications. Targeted misclassification is more difficult, because
some classes simply do not share a decision boundary.

Most production machine learning products are a Blackbox. Rarely
is access to the internals of a network, or probabilistic outputs,
available to the end user. This limitation is easily overcome with the
use of a poxy model, which stealthily learns the decision
boundaries of the production model. This provides a sandbox for
white box techniques and evades detection by limiting abnormal
traffic. Although, some accuracy is lost in the proxy model not
being a 1:1 replication of the production model.

) . e - ' -~ a1)
\O ‘o! .- » ’ ‘.. s> | b" lt,‘.- " "..<

PINENC radont 200 merhod owr et os
» X -. fncopoma e b1
1! M v e
L) S W Ll rep o
2 s Wt ‘!.“' toundn
- / . & s o B
. /
> ® oo & -
: §
L - y
/’ 4 RS N
-
wartrg X~*
s . A :
ORaN Ty e A

ol valae 0/ g v m ¥, jral vdye v,

Manipulation of saliency to create a “border attack” using some gradient techniques. [3]

A very successful method of manipulating saliency is the modified “border attack”. The algorithm starts with a normal
image. The features are manipulated in small increments until the closest decision boundary is found. A gradient is then
constructed around these features and then are minimized. The boundary is walked to its lowest point. This technique
allows for an image to still visually appear as its original classification but have just enough change to misclassify.

Motivations of Adversarial Samples:

* Poisoning continuously learning models with misclassifications, lowering confidence in the model
* Misclassification to achieve some otherwise blocked action. E.g., malware detection.

* Avoidance of behavior tracking like facial or gait recognition.

Adversarial Networks

Generative adversarial networks, or GANs, are a way of configuring two models together to play a competitive game. The
game is adversarial in nature; the generator model will produce fakes and the discriminator model will have to distinguish
these fakes from real examples.

When the discriminator is wrong, it’s trained accordingly based on its error. However, when the discriminator is correct the
error is propagated back up to the generator model so it can self-correct. Although connected, the error is always back
propagated separately. The goal of this architecture is for the generator to produce examples that the discriminator can no
longer separate from real data. The generator isn’t producing anything new. It learns the features of the real data and maps
those features to random noise. As the model learns that noise gains meaning and can be used to produce an example of
previously learned features combined in a novel way.

Adversarial Model Generated Adversarial Inputs

Previous research has shown that GANs can be used to generate adversarial inputs for binary classification models—models
with only two classes. One such algorithm is malgan, which can generate adversarial examples that perform at or better
than attack methods like the border-gradient attack.

il . . — L The MalGan architecture is
Malware g Adversanial Labelling Adversarial g comparable to a normal GAN.
Mal me— .
e SN A Instead of having a pool of real
/" Black-Box with Labels
il e) —>{ > +—»() examples, the output of the targeted
Noise . Ng A black box model is used to update
. - the detector model. The generator is
R 'n r 't Sibictkiina punished and updated when the
ot Detector detector finds a true positive. [7]
Benign

Misclassifications created by malgan are difficult to defend against.
A typical mitigation is to retrain the black box classifier with
adversarial inputs labeled as malicious. However, “It is a long
process to collect a large number of malware samples and label
them.” [7] Additionally, “Once the black-box detector is updated,
malware authors will attack it immediately by retraining MalGAN
and our experiments showed that retraining takes much less time
than the first-time training.” [7] Retraining the black box model is
no different than updating the discriminator of a GAN. Error will
propagate upward correcting causing a correction in the generator.
The GAN will then produce increasingly better adversarial
examples.

The current MalGan architecture is limited in that it attacks simple,
feed forward binary classifiers with binary features. A suggested
improvement is to change the architecture to match the data. E.g.,
changing to a convolutional architecture to produce images.
However, this complexity increases the hardware requirements to
train the model. It is also likely that adversarial examples produced
by MalGan will be human discernible.

References

[1] Sahu, Suchismita. “Decision Boundary for Classifiers: An
Introduction.” Medium, Analytics Vidhya, 8 Sept. 2021,
https://medium.com/analytics-vidhya/decision-boundary-for-classi
fiers-an-introduction-cc67c6d3dale.

[2] Brendel, Wieland, et al. “Decision-Based Adversarial Attacks:
Reliable Attacks against Black-Box Machine Learning Models.”
ArXiv.org, 16 Feb. 2018, https://arxiv.org/abs/1712.04248.

[3] Brendel, Wieland, et al. “Accurate, Reliable and Fast Robustness
Evaluation.” ArXiv.org, 12 Dec. 2019,
https://arxiv.org/abs/1907.01003.

[4] Goodfellow, lan J., et al. “Generative Adversarial Networks.”
ArXiv.org, 10 June 2014, https://arxiv.org/abs/1406.2661.

[5] Brownlee, Jason. Generative Adversarial Networks with Python.
1.8 ed.

[6] Warr, Katy. Strengthening Deep Neural Networks: Making Al
Less Susceptible to Adversarial Trickery. O'Reilly, 2019.

[7] Hu, W., & Tan, Y. (2017, February 20). Generating
adversarial malware examples for black-box attacks based on gan.
arXiv.org. Retrieved August 14, 2022, from
https://arxiv.org/abs/1702.05983

mailto:leekew1@nku.edu
https://medium.com/analytics-vidhya/decision-boundary-for-classifiers-an-introduction-cc67c6d3da0e
https://medium.com/analytics-vidhya/decision-boundary-for-classifiers-an-introduction-cc67c6d3da0e
https://arxiv.org/abs/1712.04248
https://arxiv.org/abs/1907.01003
https://arxiv.org/abs/1406.2661

